Nutrition/Feeding

Dr. Niki Whitley Fort Valley State University <u>whitleyn@fvsu.edu</u> 478-391-4840

Some slides by Dennis Hancock, U.S. Dairy Forage Research Center Some slides from Susan Schoenian, UMD Extension (retired)

Introduction

Feed – accounts for 60% or more of total production costs

Nutrition impacts production greatly – reproduction, milk production and growth

Energy (can be limiting) Carbohydrates Sugar, Starch, FIBER Fat

Protein (expensive)
 Vitamins & Minerals
 Also: Water (most critical)

Livestock do not require specific feedstuffs; they require nutrients in certain quantities and ratios.

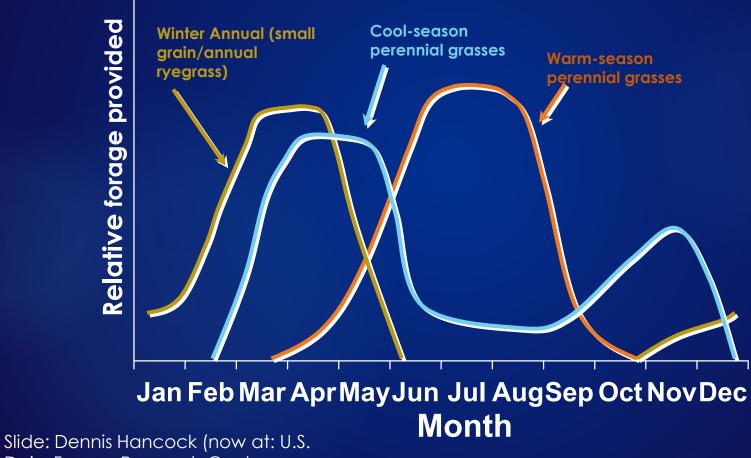
Forage basics

Soil health/fertility (soil tests)

- Enough nutrients for healthy plants/good yields
- Optimal pH (target 6.0 to 6.8, near neutral); need appropriate pH to get the most out of fertilizer
- Good water storage and drainage
- ► Low disease and pest pressure

www.caes.uga.edu

Forages


 Perennials (come back season-to-season)/ Annuals (one growing season only)
 Warm Season/Cool Season
 Grasses/Legumes (fix

nitrogen, usually have good protein levels)

A quality loose mineral designed for species is recommended, regardless of the forages used.

Forage Distribution

Dairy Forage Research Center

Stocking Rates on 2 - 2.5 Acres

				STA STAND	
Pasture Type	Cows	Sheep	Goats	Cows + Goats	
Excellent Pasture	1	5-6	6-8	1 + 1-2	
Brushy Pasture	0.75	6-7	9-11	0.75 + 2-4	
Silvopasture	0.5-0.75	4-6	6-8	0.5 + 2-4	
*Brush Eradication		Can be used	9-15	0.5 + 6-8	

Slide: Dr. Dennis Hancock, formerly at UGA

Introduction

Will consume from 2-4% body weight per day on a dry matter basis (not counting water weight)

Need to provide required nutrients in what they eat; if higher in nutrients, may be able to feed less (reverse not necessarily true)

Nutrient needs depend on

Size (weight)

► Sex

Age

- ► Genetics
- Stage and level of production
- Climate, environment, and activity
- Body condition

Generalities

- Younger animals need more nutrients, and if they cannot eat a lot (smaller), what they eat needs to have more nutrients (esp. protein).
- Late gestation (last 3-5 weeks), the babies are growing very fast – higher needs then and since full of babies, needs to have more nutrients (esp. energy).
- Lactating animals need more nutrients (esp. energy, protein)
- Larger framed, fast-growing breeds need more nutrients than smaller framed.

Meat Goat Needs*	Protein (CP)	Energy (TDN)	
Mature buck – 2% BW	<mark>7%</mark>	<mark>53%</mark>	
Dry to Early gestation doe (110 lb) – 2-2.5% BW	7-9%	55%	
Late gestation (twins)-2.7% BW	13%	66%	
Early lactation (twins)-3.0% BW	12.5%	55%	
Growing kids (30 lb, max ADG) – does/wethers			
Boer, 4.0% BW	<mark>25%</mark>	<mark>89%</mark>	
Local, 4.0% BW	21%	89%	
Growing kids (66 lb, avg growth), 3% BW	13.5-15%	66-67%	

*Based on dry matter intake as a percentage of body weight indicated in the table (NRC, 2007) Dr. Niki Whitley, Fort Valley State University; updated 4/2/16

Compared to sheep: 7-19% CP; 53-79% TDN

SHEEP Needs	Protein (CP)	Energy (TDN)
*Rams (220 lb, maintenance)	7%	53%
*Dry ewe (132 lb)	7%	53%
Late gestation (twins) 2.75% BW	10%	66%
Early lactation (twins) 3% BW	<mark>15%</mark>	<mark>67%</mark>
Weanling (4 mon, 66 lb, max ADG)		
Early maturing - 5% BW	12%	<mark>79%</mark>
Late maturing - 3% BW	<mark>19%</mark>	66%
*Yearling ewes (88 lb)	8%	66%

*Based on dry matter intake (feed without water) of *around* 2% of body weight, or BW, unless otherwise noted (NRC, 2007); from Dr. Niki Whitley, Fort Valley State University

Compared to cattle: 6-17% CP; 45-80% TDN

What to feed?

- Many (most) feedstuffs contain more than one of the nutrients. Have to balance the diet for needs.
- Feedstuffs vary considerably in nutrient content.
- No single feedstuff can supply all essential nutrients that an animal needs to survive and thrive.

Carbohydrates (energy)

- Nutrient needed in the greatest quantity.
- Dietary excess is stored as fat.
 - Expressed as
 - 1. TDN total digestible nutrients
 - 2. ME metabolizable energy
 - 3. NE net energy [maintenance, gain, and lactation]

Energy content of feeds

<u>High</u>

- Cereal grains (76-88%) Corn, barley, wheat, sorghum, rye, oats By-product feeds (76-90%) Soy hulls, distiller's grains, corn gluten, wheat middlings ▶ Fats/Oils (>100%) <u>Moderate</u> Corn silage (65-72%) Haylage (50-60%) ► Good quality pasture (60-70%) Good quality hay (50-60%) Low Low quality hay (40-50%) Low quality pasture (< 50%)</p> Straw (40-48%)
 - By-products (<40%) cottonseed hulls, peanut hulls, oat hulls

Feedstuff	% TDN
Urea	0
Oat straw	48
Bahiagrass	50
Bermudagrass	53
Grass silage	61
Dry beet pulp	75
Barley	84
Corn	88
Bread by-product	91
Distiller's grains	92
Fat	195

Fat content of feeds

Feedstuff	% EE
Urea	0
Dry beet pulp	0.7
Barley	2.1
Alfalfa hay, mid-bloom	2.3
Orchardgrass hay	3.3
Corn	4.3
Fescue pasture	5.5
Corn distiller's grains	10.5
Whole cottonseed	17.8
Whole soybeans	18.8
Fat	99

Fat cheapest energy source;
 2.25x that of carbs

- Used to raise energy level of feed, improve flavor, texture, and palatability
- Source of heat, insulation and body protection
- Essential fatty acids

 Can manipulate to change nutritional profile of meat

Ruminant diets are typically < 4% fat

Protein

- Source of essential amino acids.
- Excess dietary protein is converted to energy, then fat.
- Expressed as
 - CP crude protein
 - DIP degradable intake protein
 - UIP undegradable intake protein
 - MP metabolizable protein [microbial protein + UIP]

Protein content of feeds

Feedstuff	% CP
Wheat straw	3
Corn grain	9
Bermudagrass	10
Bahiagrass	10
Barley	12
Alfalfa hay, mid bloom	17
Crystalyx ® protein tub	18
Distiller's grains	29
Soybean meal	49
Fish meal	66
Urea	288

Alternative feeds

Feed	% DM	% TDN	% CP	% Ca - % P
Beet pulp (wet)	17	76	11	.6808
Bread by-product	68	91	14	.0918
Corn stalks	80	59	5	.3519
Grain screenings	90	65	14	.2534
Kelp (dried)	91	32	7	2.7231
Poultry litter (dried)	87	64	25	3.0 – 2.5
Potatoes, cull	21	80	10	.0324
Pumpkins, cull	10	85	16	.2443
Soybean hulls	90	77	12	.5517
Whole cottonseed	91	95	23	.1464
Whole soybeans	88	93	40	.2764

www.sheepandgoat.com/PPT/FeedPregLactFemale.ppt

Minerals and Vitamins

- Minerals are a necessity; can feed: free choice, loose or block; mix in feed; buy a protein pellet with minerals added or a complete ration
- Mineral needs could differ by geography

Copper

- Goats have higher requirements than sheep/possibly cattle
- Cu:Mo ratio should be 5:1 to 10:1
- Ratios can be more important (i.e. Ca:P of 2:1 up to 4:1, never less than 1:1)

Ca and P content of feeds

Dry matter basis	Ca	Р	Ca: P
Corn	0.02 percent	0.30 percent	0.07
Barley	0.06 percent	0.38 percent	0.16
Soybean meal	0.28 percent	0.71 percent	0.39
Orchardgrass hay	0.32 percent	0.30 percent	1.07
Fescue pasture	0.48 percent	0.37 percent	1.30
Soybean hulls	0.55 percent	0.17 percent	3.24
Alfalfa hay, mid-bloom	1.4 percent	0.24 percent	5.83
Dried kelp	2.72 percent	0.31 percent	8.77
Dicalcium phosphate	22 percent	18.65 percent	1.18
Bone meal	27 percent	12.74 percent	2.12
Ground limestone	34 percent	0.02 percent	1700

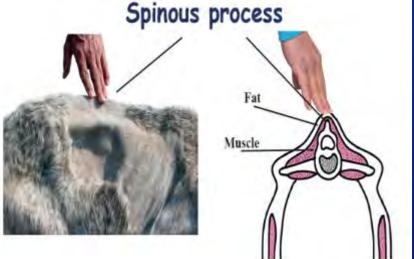
Vitamins

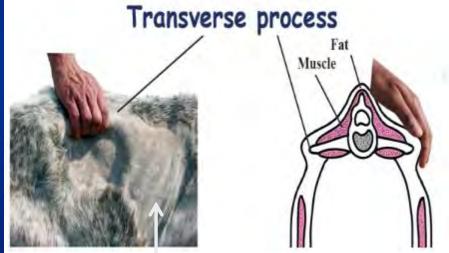
Water soluble: B & C Fat soluble: A, D, E , & K

- Ruminants have a dietary requirement for Vitamin A, D, and <u>E</u>; <u>usually</u> get it from diet
- Vitamin K and B-vitamins are manufactured by rumen microrganisms under normal circumstances
- No dietary requirement for Vitamin C (synthesized in animal tissues)
- Sources of vitamins; feed/natural sources; vitamin packs; mineral mixes, blocks, tubs
- Requirements increase with age.

Vitamin sources

Vitamin	Feedstuff
β- caroteen (vitamin A)	Green, pasture forage; dehydrated hay; cured hay, vitamin supplements
D	Ultraviolet irradiation, sun-cured hays, vitamin supplements
Е	High quality legume hay, dehydrated alfalfa, wheat germ, vitamin supplements
К	Green, leafy feedstuffs (K1). K2 synthesized in rumen
В	Not required in diets of ruminants

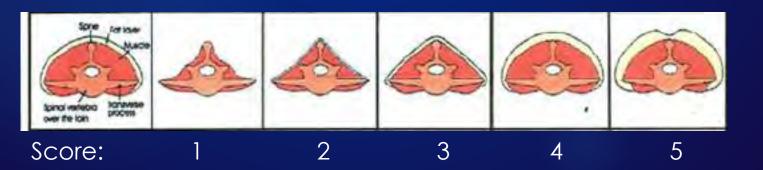



Know needs and feeds: when to use?

When the animal feed requirements are higher than pasture/browse and/or hay can support. In a drought or other food shortage (overstocking) Late gestation Early lactation, maybe throughout Development of replacement animals (females) When you want/need to maximize performance. Flushing (feed more energy 3-6 weeks before breeding) to increase ovulation rate Creep feed for young kids

Feedlot situation for growing/finishing kids

Body Condition Scoring (BCS) Must get your hands on them At least backbone and ribs Goats – sternal fat


Ribs

www2.luresext.edu/goats/library/field/bcs07.pdf Langston University (Kika de la Garza) has a good video of goat BCS)

The goat pictured is a BCS 1

Body condition scores

	Backbone/top of spine	Side of backbone	Muscle	Fat
1	Individually clearly felt, sharp, obvious	Fingers easily pass underneath	Very little	No
2	Form a smooth line with deep undulations	Smooth round edges	Concave	Very thin
3	Only slightly detectable undulations	Well covered have to push firmly to get fingers underneath	Not concave Not convex	Moderate
4	Only detectable with firm pressure	Cannot be	Maximally developed Convex	Thick
5	Not detectable	felt at all		Very thick

BCS 2

BCS 3

BCS 4

117

General Feeding

- Should weigh feeds/hay provided
- Store to keep out animals and keep clean/dry
- Make sure enough feeder space/pasture
- Monitor parasites/general health care

Nutritional disorders/issues

Grass Tetany

Low availability of Mg in straight grass lush pastures (feed high Mg mineral, feed hay before putting out on it)

Prussic acid poisoning in some forages

Frost/drought damaged sorghum and crosses; Johnsongrass; pitted fruits (wild cherry)

Toxic weeds

Urinary Calculi / "water belly"

- Blockage of urinary tract with "stones"
- Most often due to Ca:P imbalance in feed (should be 2:1)
- More common in males castrated early and fed high grain diets
- Can add 0.5% ammonium chloride to the diet
- Alfalfa is high in Ca and helps balance a diet or can add limestone to the diet

Bloat (gas build-up)

- Legume bloat (fresh alfalfa for example)
- Grain bloat (when TDN:CP ratio is low -6:1 is recommended).
- Prevent
 - Feed hay before grazing; avoid am grazing; feed roughage or ionophore with grain diets
 - use legumes less likely to cause (arrowleaf/berseem clover, crownvetch, cowpea, soybean, etc.)
 - Use an antifoaming agent (poloxalene; such as Bloat Guard®)

Acidosis (grain overload)

- Too much energy feed too fast; lactic acid build-up in blood
- Avoid changing feeds quickly; have plenty of feeder space; baking soda out for them when feed high grain?
- Clostridium perfringens over growth is often seen with acidosis as well and can cause potentially fatal enterotoxemia

- Scours / Enterotoxemia (overeating and/or bloody scours)
 - C. Perfringens type C and/or D (B?) over-grows produces toxins
 - Vaccinate (2x/year?); do not change diets quickly; treat with anti-toxin after exposure; probiotics in feed?
 - Treat with antibiotics, fluid therapy...

Scours / Coccidiosis

- Protozoan parasite; damages gut wall (can be permanent – "poor doers")
- Crowded, dirty areas
- Always around, can get some immunity

Prevent

 Decoquinate (deccox), and ionophore antibiotics such as monensin (Rumensin®) and lasalocid (Bovatec®)

Treatment: Amprolium (Corid, Amprol; overdose-Polio, death); Sulfa drugs

Prevention/Treatment

- Merck Vet Manual (sheep/other countries):
 - Diclazuril (Vecoxan®) 1 mg/kg oral preventative (once 6–8 wk old/just before weaning or twice at 3-4 wk old & 3 wk later)
 - Single dose toltrazuril* (Baycox®) at 20 mg/kg treatment reduces oocysts for 3 wk
 - Sulfaquinoxaline 0.015% concentration in drinking water at for 3–5 days for lambs (VFD)

*Research indicates toltrazuril may be more effective than diclazuril (which may require a treatment 3 weeks later); must work with vet/VCPR

Treatment/Prevention

- Sulfa drugs (work with your vet)-
 - 12.5% Sulfamethazine (i.e. Sulmet®), oral drench: 50
 Ib lamb: 1.5oz first day, 0.75oz next 2 days (25 mg/lb first day, 12.5 mg/lb next 2 days)
 - Sulfamethazine bolus (i.e. Sustain III®), calf bolus 1 per 50lb
 - 12.5% Sulfadimethoxine (i.e. Albon®, Di-methox®), oral drench: 25 mg/lb first day, half that next 2-4 days (i.e. per 50 lb: 10cc first day, 5cc next days)

Treatment/Prevention

- More recent research:
 - Ponazuril (Marquis®) at 10 mg/kg once by mouth before weaning (prevent) or as a treatment
- Natural control:
 - Sericea lespedeza (forage) has been shown to reduce cocci oocyst counts (goats and sheep)
 - Oregano essential oils (i.e. OregoStim®) have been shown to reduce oocyst counts in poultry; 500 ppm (similar to diclazuril)

Polioencephalomalacia

Thiamine (vitamin B1) deficiency (when normal gut bugs are disturbed); high grain diets, antibiotic treatment; also overdose of amprolium/levamisole, high Sulfur in diet

White Muscle Disease

Selenium deficiency; usually seen in young fast growing kids; if soils/forages low, supplement in minerals or by injection of doe before kidding or kids at birth (can kill them with overdose, take care)

Parasites

Ingest on pasture. Depending on species, symptoms from anemia, diarrhea, and death to general unthriftiness/poor growth (rough hair coat, etc).

Prevent: Integrated parasite management (pastures, animals, refugia, nutrition, browse, TST)

Other problems
 Salmonella/Listeria
 Milk fever/Ketosis (ewes)
 Molds/myocotoxins in feeds
 Miscellaneous Vitamin/Mineral deficiencies

Some references:

http://www.sheepandgoat.com/metabol.html http://sheepandgoat.com/feed.html http://www.ag.ndsu.edu/pubs/ansci/beef/as1182.pdf http://www.luresext.edu/goats/research/nutr_calc.htm Ration balancer:

http://www.luresext.edu/goats/research/nutritionmodule1.htm

Additional Resources

http://pubs.ext.vt.edu/410/410-853/410-853.html

http://www.sheep101.info/201/feedinglambs.html

http://www.sheep101.info/201/feedingewes.html

Questions?

